ENERGIA FREE-COOLING SYSTEMS

Водоохладители воздушного охлаждения со спиральными компрессорами и режимом Free-cooling

CLOSE CONTROL SYSTEMS Общие характеристики

ENERGIA FREE-COOLING SYSTEMS

Водоохладители MONTAIR серии **ENERGIA FREE-COOLING**, использующие фреон R410A и работающие в режиме естественного охлаждения, являются идеальным оборудованием для непрерывного производства холодоносителя, особенно для условий с низкой температурой наружного воздуха.

Благодаря функции естественного охлаждения возможно получать холодоноситель во встроенном водяном теплообменнике воздушного охлаждения.

В холодные месяцы в режиме естественного охлаждения (Free-cooling) обратная вода из системы охлаждается непосредственно в теплообменнике, через который вентиляторами продувается наружный воздух. Таким образом, экономится электроэнергия за счет отключения спиральных компрессоров.

Трехходовой клапан гидравлической системы чиллера управляется контроллером, который управляет всем агрегатом, позволяя работать в режимах: охлаждение, Free-cooling или смешанный режим (одновременная работа в режиме машинного охлаждения и Free-cooling).

Серия чиллеров **ENERGI**A с режимом Free-cooling работает со шкафными кондиционерами **PROGRESSO** и **DINAMICA** для охлаждения помещений с высокой плотностью размещения оборудования, таких как серверные помещения и датацентры, для которых необходимо постоянное круглогодичное охлаждение. При применении технологии Free-cooling значительно снижается энергопотребление, до 50%. Чиллеры серии **ENERGIA FREE COOLING**, возможные в различных версиях, оборудованы осевыми вентиляторами, спиральными компрессорами и пластинчатыми теплообменниками. Чиллеры могут комплектоваться гидромодулями с накопительным баком, насосом или баком и насосом.

Широкая гамма аксессуаров, установленных на заводе или поставляемых отдельно, делает эту серию чрезвычайно гибкой и функциональной.

Чиллеры воздушного охлаждения с режимом Free-cooling серии **ENERGIA** имеют холодопроизводительность от 28 до 43 кВт в версии **ENERGIALIGHT** и от 53 до 176 кВт в версии **ENERGIAPLUS**.

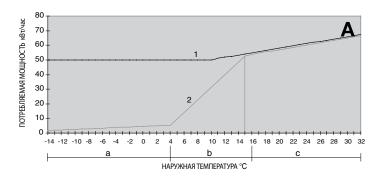
ENERGIALIGHT

Версия **ENERGIALIGHT** имеет различные модификации:

CRE/FC только охлаждение

CRE/FC/SP только охлаждение, с баком и насосом

ENERGIAPLUS
FREE-COOLING SYSTEMS PLUS

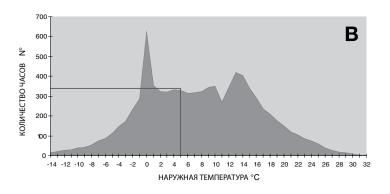

Версия **ENERGIAPLUS** имеет одну модификацию:

CRE/FC только охлаждение

Нижеприведенные графики показывают энергосбережение в зависимости от различного исполнения чиллеров: с режимом естественного охлаждения в сравнении со стандартным.

Рис. А

Кривая 1 относится к работе стандартного чиллера и отображает энергопотребление при различных температурах наружного воздуха.


Кривая 2 показывает изменения энергопотребления чиллера с режи-

мом естественного охлаждения при различных температурах наружного воздуха и условно разделена на основные части:

- а) полный режим естественного охлаждения (Free-cooling), работают только вентиляторы;
- б) смешанный режим (частичное охлаждение осуществляется вентиляторами и охлаждение компрессорами);
- с) механическое охлаждение (работа компрессоров и вентиляторов).

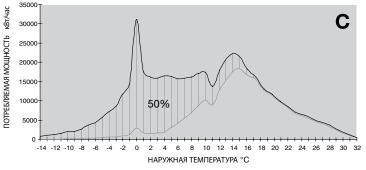

Из графиков разница энергопотребления стандартного чиллера и чиллера, работающего в режиме Free-cooling, совершенно очевидна. Экономия электроэнергии начинается при температуре наружного воздуха 15 °C.

Рис.В

Кривая показывает значения наружной температуры (в часах), измеренные в качестве примера в городе в течение года.

Рис. С

Кривая С показывает сравнительное общее потребление электроэнергии двумя различными чиллерами в течение года. Используя информацию, приведенную на предыдущих рисунках, можно определить ожидаемую

экономию энергопотребления чиллера с режимом естественного охлаждения в сравнении со стандартным чиллером. В приведенном примере она составляет приблизительно 50%.

Условия:

Город

Работа чиллера 24 часа в сутки.

Температура холодоносителя вх/вых: 15/10 °C

Технология естественного охлаждения (Free-cooling)

Принцип работы

Серия чиллеров ENERGIA FREE COOLING с режимом свободного охлаждения разработана для охлаждения водо-гликолевых растворов.

Кроме обычных компонентов, применяемых в стандартных чиллерах, таких как компрессоры, конденсаторы, испарители, ТРВ, также используется дополнительный теплообменник воздушного охлаждения для режима Free-cooling. Система свободного охлаждения состоит из трехходового модулирующего клапана, датчиков.

Водогликолевый раствор поступает из системы в чиллер и охлаждается в теплообменнике за счет машинного охлаждения. В режиме свободного охлаждения холодоноситель поступает в дополнительный теплообменник САF и охлаждается воздушным потоком вентилятора. Управление и контроль осуществляются контроллером по значениям температурных датчиков: входящей воды, выходящей и наружного воздуха.

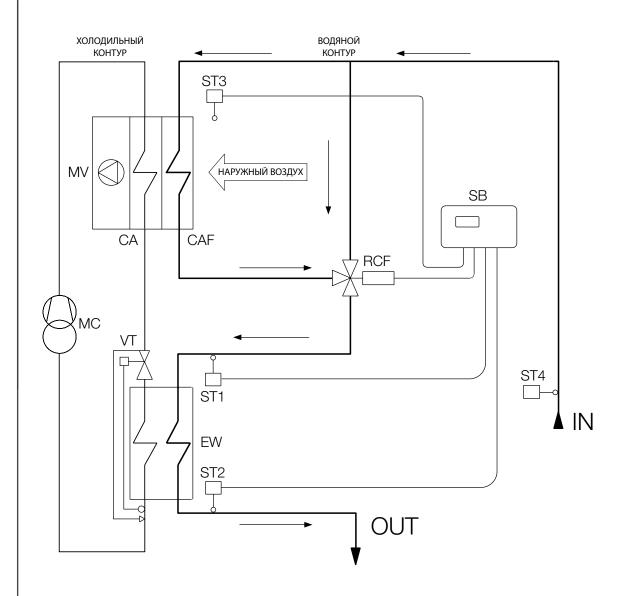
Летний Режим Работы

Когда температура наружного воздуха выше температуры смеси, поступающей в чиллер из системы, агрегат работает как стандартный чиллер, то есть осуществляется машинное охлаждение компрессорами. Вся гликолевая смесь через трехходовой вентиль направляется в испаритель, а теплообменник Free-cooling не используется. Общее энергопотребление такое же, как для стандартного агрегата.

Зимний Режим Работы

При температуре наружного воздуха от 0 до -4 °C чиллер переходит полностью в режим свободного охлаждения. Трехходовой вентиль, управляемый контроллером по датчикам ST3 и ST4, перенаправляет холодоноситель в дополнительный теплообменник CAF, таким образом, раствор охлаждается воздухом. По датчику ST3 контроллер отключает компрессоры. Вентиляторы продолжают работать для охлаждения дополнительного теплообменника Free-cooling. При снижении температуры обратной воды из системы снижается скорость вращения вентиляторов. При дальнейшем снижении температуры для поддержания постоянства значения температуры контроллер периодически переключает трехходовой вентиль, таким образом смешивается вода из системы и проходящая через теплообменник в режиме свободного охлаждения.

Режим Работы в межсезонье


В межсезонье осуществляется совместная работа в режимах машинного охлаждения и свободного охлаждения. Работа чиллера в режиме свободного охлаждения активизируется, когда температура наружного воздуха на 2 °C ниже, чем температура поступающего из системы водогликолевого раствора, который охлаждается в дополнительном теплообменнике т.е. наступает режим энергосбережения. При недостаточном охлаждении активизируется частичная работа компрессоров.

Преимущества

- снижение энергозатрат в межсезонье;
- производство холодоносителя зимой;
- длительный срок службы компрессоров;
- низкие эксплуатационные затраты.

Схема Free-cooling

Обозначения

CA	конденсатор	SB	контроллер
CAF	теплообменник Free-cooling	ST1	датчик температуры входящей воды в испаритель
EW	испаритель	ST2	датчик защиты от замораживания
МС	компрессор	ST3	датчик наружной температуры
MV	осевые вентиляторы	ST4	датчик температуры входящей воды из системы в чиллер
RCF	трехходовой клапан	VT	ТРВ

Общие характеристики

Рама

Чиллеры воздушного охлаждения серии ENERGIA FREE COOLING предназначены для наружного монтажа и имеют самонесущую стальную раму с гальванизированным покрытием порошковой краской.

Легко снимаемые панели позволяют осуществлять доступ к внутренним компонентам агрегатов для обслуживания и других необходимых операций.

Компрессоры

Спиральные компрессоры с двигателями трехфазного электропитания, установленные на резиновые антивибрационные подушки, имеют защиту от перегрузки (кликсон) и нагреватель картера.

Вентиляторы

Осевой вентилятор низкого расхода воздуха с крыльчатками специального профиля имеет прямой привод от двигателей с внешним ротором. На выходе воздуха из раструба установлены защитные решетки.

Конденсатор

Конденсатор изготовлен из медных труб с алюминиевым оребрением. Модели 1028–3130 имеют один холодильный контур, модели 4151–4174 имеют два холодильных контура и один водяной.

Испаритель

Испаритель пластинчатый, паяный из нержавеющей стали AISI 316. Модели 1028–3130 имеют один холодильный контур и один водяной, а модели 4151–4174 имеют два холодильных контура и один водяной.

Электрический отсек

Электрический отсек имеет в своем составе: главный выключатель, сблокированный с дверью, предохранители, защиты от перегрузки компрессоров и насоса, тепловые защиты компрессоров и насоса (SP), термоконтакты для вентиляторов, промежуточные реле и электрические терминалы для внешних подсоединений.

Контроллер

Контроллер предназначен для выполнения следующих функций: контроль и регулирование температуры воды, защита теплообменника от заморозки, учет времени работы компрессоров, сброс аварий, беспотенциальные релейные контакты для выдачи сигнала общей аварии, постоянное отображение рабочего статуса блока, контроль уставки, реальной температуры воды и в случае аварии частичная или полная блокировка блока с отображением сработавшего защитного устройства.

ENERGIALIGHT

Холодильный и гидравлический контуры **ENERGIALIGHT** изготовлены из медных труб.

CRE/FC версия:

Холодильный контур: фильтр-осушитель, TPB с линией внешнего уравнивания, смотровое окно на жидкостной линии с индикатором влажности, ручной сброс прессостата высокого давления и автоматический сброс прессостата низкого давления.

Водяной контур: теплообменник, трехходовой клапан, испаритель, температурный датчик, датчик защиты теплообменника от заморозки, дифференциальное реле перепада давления на теплообменнике, вентиль выпуска воздуха из гидравлической системы, вентиль слива воды.

CRE/FC/SP версия:

Холодильный контур: фильтр-осушитель, TPB с линией внешнего уравнивания, смотровое окно на жидкостной линии с индикатором влажности, ручной сброс прессостата высокого давления и автоматический сброс прессостата низкого давления.

Водяной контур: теплообменник, трехходовой клапан, испаритель, температурный датчик, датчик защиты теплообменника от заморозки, дифференциальное реле перепада давления на теплообменнике, вентиль выпуска воздуха из гидравлической системы, изолированный накопительный бак, циркуляционный насос, предохранительный клапан, вентиль заправки и слива воды, расширительный бак.

ENERGIAPLUS

Холодильный и гидравлический контуры **ENERGIAPLUS** изготовлены из медных труб.

CRE/FC версия:

Холодильный контур: фильтр-осушитель, TPB с линией внешнего уравнивания, смотровое окно на жидкостной линии с индикатором влажности, ручной сброс прессостата высокого давления и автоматический сброс прессостата низкого давления.

Водяной контур: теплообменник, трехходовой клапан, испаритель, температурный датчик, датчик защиты теплообменника от заморозки, дифференциальное реле перепада давления на теплообменнике, вентиль выпуска воздуха из гидравлической системы, вентиль слива воды.

Водяной контур с инерционным баком: теплообменник, трехходовой клапан, испаритель, температурный датчик, датчик защиты теплообменника от заморозки, дифференциальное реле перепада давления на теплообменнике, вентиль выпуска воздуха из гидравлической системы, инерционный бак, предохранительный клапан, вентиль заправки и слива воды.

Водяной контур с циркуляционным насосом: теплообменник, трехходовой клапан, испаритель, температурный датчик, датчик защиты теплообменника от заморозки, дифференциальное реле перепада давления на теплообменнике, циркуляционный насос, предохранительный клапан, вентиль выпуска воздуха из гидравлической системы, вентиль слива воды.

Водяной контур с двойным циркуляционным насосом: теплообменник, трехходовой клапан, испаритель, температурный датчик, датчик защиты теплообменника от заморозки, дифференциальное реле перепада давления на теплообменнике, два насоса, предохранительный клапан, обратные клапаны, вентиль выпуска воздуха из гидравлической системы, вентили заправки и слива воды, расширительный бак.

Технические данные серии ENERGIALIGHT

CRE/FC		1028	1031	1037	1043				
Охлаждение									
Холодопроизводительность (1)	кВт	27,9	31,4	37,3	42,8				
Потребляемая мощность (1)	кВт	9,5	11,0	13,9	15,6				
100%-ное естественное охлаждение									
Температура воздуха (2)	°C	-1,7	-2,7	0,5	-1,2				
Падения давлений (2)	кПа	0,98	0,98	1,96	1,96				
Компрессоры									
Количество	n°	1	1	1	1				
Тип		Scroll	Scroll	Scroll	Scroll				
Гидравлический контур									
Расход воды	л/с	1,55	1,74	2,07	2,37				
Падения давлений	кПа	117	142	132	141				
Подсоединения по воде	дюймы	1"	1"	1"	1"				
Конденсатор									
Вентилятор	n°	1	1	2	2				
Расход воздуха	M ³ /C	3,33	3,33	4,44	4,03				
Электрические данные									
Электропитание	В/Ф/Гц	<>							
Максимальный рабочий ток	А	25	29	36	42				
Максимальный пусковой ток	А	144	144	162	171				
Звуковое давление									
Стандартный (3)	дБ(А)	51	51	52	52				
Bec									
Транспортный вес	КГ	415	430	470	485				
Рабочий вес	КГ	437	452	499	515				
Версия с баком и насосом									
Гидравлический контур									
Расход воды	л/с	0,75	1,10	1,10	1,10				
Статический напор	кПа	109	152	150	129				
Объем бака	л	150	150	150	150				
Расширительный бак	Л	8	8	8	8				
Подсоединения по воде	дюймы	1"	1"	1"	1"				
Bec									
Транспортный вес	КГ	495	510	550	565				
Рабочий вес	КГ	667	682	729	745				

⁽¹⁾ Холодоноситель — вода (30% содержание этиленгликоля) с температурами 15°С /10°С при наружной температуре 35°С.

⁽²⁾ Наружная температура, при которой указана холодопроизводительность в п. 1.

⁽³⁾ Уровень звукового давления измерен в свободном пространстве на расстоянии 1 м от блока в соответствии с ISO 3744.

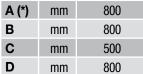
CRE/FC		2053	2059	2068	2077	2086	3099	3114	3130	4151	4174
Охлаждение											
Холодопроизводительность (1)	кВт	52,7	59,5	68,1	76,7	85,7	99,1	114	130	151	174
Потребляемая мощность (1)	кВт	18,1	20,3	23,3	26,1	29,3	36,8	42,2	48,4	54,4	64,9
100%-ное естественное охлаждение											
Температура воздуха (2)	°C	2,1	1,3	0	-2,4	-3,5	1,0	0	-1,1	-3,0	-4,8
Падения давлений (2)	кПа	2	2	2	2	2	6	6	6	8	8
Компрессоры											
Количество	n°	2	2	2	2	2	3	3	3	4	4
Тип		Scroll	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll
Контуры	n°	1	1	1	1	1	1	1	1	2	2
Ступени регулирования	n°	<	<> <						66/100> 25/50/75/100		
Гидравлический контур											
Расход воды	л/с	2,72	3,07	3,52	3,96	4,43	5,09	5,88	6,70	7,78	8,93
Падения давлений	кПа	115	105	120	100	100	100	135	145	102	106
Подсоединения по воде	дюймы	2"	2"	2"	2"	2"	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2
Конденсатор	Конденсатор										
Вентилятор	nº	2	2	2	2	2	3	3	3	4	4
Расход воздуха	M ³ /C	8,28	8,28	8,28	8,06	8,06	14,72	14,72	14,72	16,66	16,66
Электрические данные											
Электропитание	В/Ф/Гц	<				400 / 3+	N / 50				>
Максимальный рабочий ток	А	43	46	53	57	66	84	90	103	116	133
Максимальный пусковой ток	А	166	168	176	189	233	207	223	270	248	300
Звуковое давление											
Стандартный (3)	дБ(А)	59	59	59	59	59	60	60	60	61	61
SL (3)	дБ(А)	57	57	57	57	57	58	58	58	59	59
Bec											
Транспортный вес	КГ	923	932	951	980	999	1308	1317	1350	1472	1510
Рабочий вес	КГ	970	980	1000	1030	1050	1390	1400	1435	1560	1600
Версия с баком и насосом											
Гидравлический контур											
Расход воды	л/с	1,85	1,85	1,85	1,85	1,85	3,0	3,0	3,0	3,0	3,0
Статический напор	кПа	125	130	115	125	115	195	155	135	165	155
Объем бака	л	400	400	400	400	400	400	400	400	600	600
Расширительный бак	Л	12	12	12	12	12	12	12	12	18	18
Подсоединения по воде	дюймы	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2
Bec											
Транспортный вес	КГ	928	937	956	985	1004	1313	1322	1355	1477	1515
Рабочий вес	КГ	1525	1535	1555	1585	1605	1950	1960	1995	2405	2445

Аксессуары

CRE/FC		1028	1031	1037	1043
IM	автоматы защиты	-	-	-	-
SL	низкошумная версия	-	-	-	-
TX	оребрение конденсатора с эпоксидным покрытием	•	•		
SI	инерционный бак (кроме версии SP)	-	-	-	-
PS	один циркуляционный насос (кроме версии SP)	•	•		
PD	два насоса	-	-	-	-
MN	манометры высокого и низкого давлений	-	-	-	-
CR	выносной пульт управления	•	•	•	•
IS	интерфейсная плата RS 485	•	•	•	•
RP	металлические решетки конденсатора	•	•	•	•
AG	резиновые виброоснования	•	•	•	•

РАЗМЕРЫ		1028	1031	1037	1043
L	ММ	1850	1850	1850	1850
P	ММ	900	900	900	900
Н	MM	1840	1840	1840	1840

РАЗМЕРЫ


C

- Аксессуары невозможны для указанных моделей
- (*) Сторона А: сторона электрического отсека

Отдельно поставляемые аксессуары

Свободное пространство

